
1

The ASCI Data Models and Formats Effort

Progress Towards A Comprehensive
Approach to Interoperable Scientific Data

Management and Analysis

SC ‘98

Larry Schoof

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000

This is a presentation describing work in progress on the Accelerated Strategic
Computing Initiative (ASCI) Data Models and Formats (DMF) effort. The
work is being performed at Lawrence Livermore National Lab (LLNL), Los
Alamos National Lab (LANL), and Sandia National Lab (SNL).

2

Outline

• Points of Contact

• Motivation

• Objectives
• Data Abstractions

• Fiber Bundle Model

• Implementation

• Status

• Future

This is the outline of the presentation.

3

DMF Points of Contact

• Laboratory POCs
– LLNL: Mark Miller (miller@viper.llnl.gov)

– LANL: John Ambrosiano (ambro@lanl.gov)
– SNL: Larry Schoof (laschoo@sandia.gov)

• Key collaborators
– Limit Point Systems, Inc.: David Butler (dmbutler@limitpt.com)
– NCSA: Mike Folk (mfolk@ncsa.uiuc.edu)

These are the primary points of contact.

4

Motivation

• Data sharability; application interoperability
– ASCI “ONE program, THREE laboratories” philosophy

• Software reuse
– Common data format allows development of common tools

• Leverage tri-lab experiences
– EXODUS (SNL), SILO (LLNL), netCDF (UCAR), PDB (LLNL),

HDF (NCSA)
– previous data abstractions were too restrictive, not robust

Why are we doing this?

To facilitate data communication between applications within (intra-lab) and
among (inter-lab) the three ASCI labs, we must collaborate and leverage each
other’s experiences.

A common data format allows the use of common tools for multiple
application codes, rather than developing separate tools for each specific
physics code. This software reuse is a common thread through the ASCI
program.

We have extensive experience with storage of computer simulation data,
including EXODUS and SILO, as well as lower-level data storage libraries
such as netCDF, PDB, and HDF. These past efforts were successful to varying
degrees, but they all suffer from one primary shortcoming: the data
abstractions were too restrictive. In the current effort, we have learned from
our past experiences and have devoted considerable resources to create a data
abstraction that doesn’t have the limitations of past efforts.

5

Motivation (cont.)

• Workshop on Interoperability of DOE
Visualization Centers
– Hosted by DOE MICS (Dan Hitchcock); ANL, BNL, INEEL,

LBNL, LLNL, LANL, NASA-Ames, ORL, PNNL, SNL, NCSA

– 4 recommendations; 2 concerned with ASCI DMF
• non-ASCI DOE sites participate in DMF workshops
• national labs incorporate DMF into their visualization

codes, once it is proven

• Collaboration with Petroleum Open Standards
Consortium (POSC)
– Establishing standards for data exchange

As an example of groups in the simulation community who are interested in
data sharing, DOE (MICS office) has initiated an informal effort to encourage
interoperability of visualization tools. At the first workshop held in March, the
ASCI DMF project was discussed as a related effort that could result in
software libraries that facilitate data sharing between applications. Half of the
recommendations that came out of that workshop concerned ASCI DMF.

In a recent meeting of the Petroleum Open Standards Consortium, a resolution
was passed to collaborate with the ASCI DMF effort.

6

Objectives

• Sound data model with robust data abstractions
– Address computational physics data types

• Fields on meshes (structured, unstructured, hierarchical)

– Extendible

• Common data format
– Allows common tools (setup, analysis, visualization, etc.)
– Allows data communication among tools

• Common application programming interface (API)
– Shield applications from complexities of data model

– Perform permutations (e.g., domain local <--> global mapping)

• High performance
– Reduce ratio of data manipulation time / compute time

What do we intend to accomplish?

1. Develop data abstractions for computational physics data types (fields on
meshes); create a data model (objects and operators) that uses these
abstractions.

2. Develop data schema (tables, trees, graphs, etc.) that implements the data
model and is stored in a common format that facilitates the use of common
tools.

3. Develop a “high-context” (using the semantics of the application domain)
programming interface that performs the mapping from the application domain
to the data model.

4. Tune the software for the three ASCI hardware platforms.

7

Low-context Data Abstractions

• netCDF (UCAR)
– multi-dimensional arrays of ints, floats, etc

• HDF4 (NCSA)
– Scientific Data Set: multi-dimensional arrays of ints, floats, etc
– Vdata: collection of records of fixed-length fields (tables)

– Vgroup: collection of related objects
– raster: 2-dimensional raster image
– palette: color-lookup table with 256 entries

– annotation: text attached to objects

• HDF5 (NCSA and ASCI labs)
– multi-dimensional array of record structures
– grouping structure

“Low-context” data abstractions are those that contain little or no references to
the application domain. Application domain objects may be mapped to the
lower abstractions, but the context is lost in the mapping. For example, a
coordinate field may be represented as an n-dimensional array, but the fact that
the values in the array are positions of points in space is lost.

Because these abstractions don’t contain domain-specific objects, they can
represent data from many domains, and thus serve a valuable purpose.
However, the context must be preserved with some other mechanism, such as
attaching attributes or adopting naming conventions.

HDF5 is a clear departure from older versions of HDF in that all the previous
data types are now represented with just two mechanisms: an n-dimensional
array and a grouping structure. This has simplified the programming interface
and may result in better performance.

8

High-context Data Abstractions

• EXODUS (SNL)
– element blocks, connectivity arrays, coordinate arrays,

element variables, nodal variables, global variables, side sets,
node sets, distribution factors, QA records, information
records, element maps, node maps, properties, ...

• SILO (LLNL)
– quadmesh, quadvar, ucdmesh, ucdvar, pointmesh, multimat,

multimesh, multivar, material, material species, zonelist,
facelist, curve, variable, directory, ...

• Data Explorer (IBM)
– field: a mapping from some domain to some data space
– domain: positions and connections

– data space: dependent variables
– arrays and groups

“High-context” data abstractions preserve domain-specific semantics and
provide meaning to data objects. As a result, these typically are useful for a
relatively small set of applications. EXODUS and SILO are examples that
have proven beneficial in that they have allowed data sharing between
applications within specific domains. However, their data abstractions are not
robust enough to easily accommodate new types of data or even minor
modifications to existing entities without adding completely new objects,
resulting in a plethora of supported objects.

We have been intrigued by the IBM Data Explorer (DX) data abstraction,
which is more general but provides sufficient context to be useful. Its
foundation is in the mathematical field of fiber bundles.

9

ASCI DMF Data Abstraction

• High-context (i.e., meshes and fields)

• Based on mathematical field of fiber bundles

• Previous examples

– IBM Data Explorer data model

– LPS WHITNEY visualization system
– NASA Super Glue

– UCLA Conquest
– UCSD/DEC Sequoia 2000

As a result of much investigation, we decided to base the DMF data abstraction
on fiber bundles. Past successes (IBM DX and LPS Whitney) demonstrated
that this had great potential to be robust enough to represent the high-context
information from our computational simulation domains.

10

Fiber Bundle Description

B = BASE SPACE F = FIBER SPACE B X F = BUNDLE

DOMAIN RANGE FIELD
SPACE

FIELD
VALUES

SECTION OF
BUNDLE

This and the next slide are intended to provide a brief description of fiber
bundles and how they map to computational physics data.

This is a simple example of representing the function y = f(x) in fiber bundle
terminology. The X axis (domain) is the base space. The Y axis (range) is the
fiber space. The cartesian product of the X and Y axes form a bundle that
represents the space where all possible values of X and Y exist (field space).
Picking a specific value of Y, the dependent variable, for each value of X, the
independent variable, forms a section of a bundle (the function or field values).

11

Fiber Bundle Relationship to
Computational Physics

DOMAIN:
COMPUTATIONAL

MODEL

RANGE:
DEPENDENT

VARIABLE
SPACE

FIELD
SPACE

FIELD
VALUES

MESH: SETS OF

0-CELLS (POINTS)

1-CELLS (EDGES)

2-CELLS (FACES)

3-CELLS (VOLUMES)

ALGEBRAIC
TYPE:

SCALAR,

VECTOR,

TENSOR

FIELD
TEMPLATE:

ALGEBRAIC
TYPE OVER
SUBSET OF
MESH

FIELD

In computational physics, the domain is represented as some computational
model, typically a mesh consisting of sets of points, lines, surfaces, and
volumes.

The range is the dependent variable space represented as zero-order tensors
(scalars), first-order tensors (vectors), and second-order tensors.

The field space is some algebraic type (scalar, vector, tensor) over a portion or
all of the mesh. It represents the space in which dependent variables are valid.
We refer to this as a field template.

The actual values of the dependent variables compose a field.

12

Subset Inclusion Lattice (SIL)

• Directed acyclic graph

• Nodes are sets of:
– 0-cells (points)
– 1-cells (edges)
– 2-cells (faces)

– 3-cells (volumes)

• Links are inclusion
maps between subsets
and supersets

• Lattice represents:
– topology

– assembly
– domain decomposition
– boundary

We chose to represent the base space (computational model) as a subset
inclusion lattice. It is implemented as a directed acyclic graph in which the
nodes are sets of 0-cells, 1-cells, 2-cells, and 3-cells. The links in the graph are
inclusion maps that describe what cells in a superset are contained in a subset.

By assigning “roles” to these maps, the lattice is used to represent topology
(for example, point lists defining volumes, point lists defining faces which
define volumes, etc.); assembly (grouping sets together to form larger sets);
domain decomposition (inclusion maps map process-local data to global data -
- local-to-global maps); boundary (for example a list of faces that form the
external surface of the mesh).

13

Implementation

FIBER BUNDLE

DATA MODEL

DATA FORMAT

APPLICATION

MPI IO (ANL)

DMFAPI (SNL)
CDMLIB (LANL)
APP “veneer”

DSL (LLNL)

HDF5 (NCSA)

FBK (LLNL)

This depicts the software layers developed to implement the data model. The layers in red deal
primarily with the data model; the ones in blue deal with the data format. The arrows imply that the
selection of the fiber bundle data model was driven by the types of data in our application domains, and
that once chosen, the data model drove the development of two of the software layers.

A brief description of each layer follows:

MPI IO (Message Passing Interface I/O): This is a portion of the most recent specification of MPI
(MPI2) that includes parallel (collective and independent) I/O. We selected this specification as it is a
likely candidate to become the standard parallel I/O interface specification for distributed memory and
SMP cluster machines. As vendors create and tune custom implementations of the specification, we
will benefit with little or no changes to higher layers. Our beta software is using the ROMIO
implementation of MPI2 from Argonne National Labs.

HDF5 (Hierarchical Data Format 5): HDF5 is a complete rewrite of previous versions of HDF in
collaboration with the ASCI labs. This layer specifies the format of the data on the storage medium.

DSL (Data Structures Layer): The primary purpose of this layer is to isolate the underlying layers that
actually perform I/O from the upper layers. This facilitates switching the I/O layer if it becomes
necessary.

FBK (Fiber Bundle Kernel): This implements the data model (as relations or tables) in terms of fiber
bundles (i.e., fibers, bundles, etc.).

DMFAPI / CDMLIB (DMF Application Programming Interface / Common Data Model LIBrary):
These are prototype “high-context” layers that provide the mapping from application domain-specific
data to entities in the fiber bundle model. Additional transformations such as processor local-to-global
mapping are also performed at this layer.

14

Too Many Layers?

APPLICATION

MPI IO (ANL)

DMFAPI (SNL)
CDMLIB (LANL)
APP “veneer”

DSL (LLNL)

HDF5 (NCSA)

FBK (LLNL)

Raw dataMetadata
“post-it notes”

Some people are concerned about performance of our implementation with so
many layers. Think of the raw data represented as numbers on reams of
computer paper. To describe the data, metadata is attached as “post-it notes”
to give the raw data some context (i.e., “This vector of data are the
coordinates.” or “This array of ints is the local-to-global map for processor
0.”). The raw data is passed through each of the layers untouched, unless the
client requests a transformation to be performed.

15

Performance Considerations

BLOBS

• Light data (metadata)

– memory resident
– data is local (private) or

global (shared) across
processors

• Heavy data (raw data)

– file resident
– no transformations unless

requested

INDICES

FIELDS

BUNDLES

FIBERS

CELLS

The current implementation of the Fiber Bundle Kernel uses five tables (cells,
fibers, bundles, fields, indices) to store the metadata. This “lightweight” data
is typically on the order of a few megabytes. The tables are memory resident
and each entry in each table is private or shared according to the client’s
request. The raw data (typically 3-4 orders of magnitude more than the
metadata) is passed through all of the layers straight to disk, unless a
transformation (for example, a gather or scatter) is requested by the client.

16

Status

• Completed
– two releases of unified data model and common data schema

– two releases of data schema implementation (VBT 1.0)
– alpha, beta, and full releases of parallel HDF5
– designed and implemented prototype “high-context” API’s

• Future
– deliver top-to-bottom solution (beta) (FY99 Q1)

– refine unified data model and common data schema (FY99 Q2)
– refine “high-context” API (FY99 Q3)
– tune for better performance (FY99 Q3)

– deliver top-to-bottom solution (“production”) (FY99 Q4)

This summarizes our accomplishments to date and our future deliverables.

17

Future

• Encourage other agencies to adopt

• Become vehicle for interoperability (visualization,

analysis, meshing, etc.)

• Become de facto standard for sharing data within

computational physics community

Our goal is to provide a vehicle that facilitates application interoperability in
the computational physics community.

